Find Inverses Recall that a relation is a set of ordered pairs. The inverse relation is the set of ordered pairs obtained by reversing the coordinates of each ordered pair. The domain of a relation becomes the range of the inverse, and the range of a relation becomes the domain of the inverse.

function 1 (x,y) function 2

(EYLCONCEP)

Inverse Relations

Words

Two relations are inverse relations if and only if whenever one relation contains the element (a, b), the other relation contains the element (b, a).

Examples

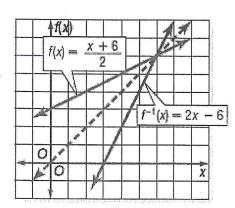
 $Q = \{(1, 2), (3, 4), (5, 6)\}$ $S = \{(2, 1), (4, 3), (6, 5)\}$ Q and S are inverse relations.

DEFINITION:

An inverse function undoes the operation of a starting function

Inverses of Relations and Functions You can determine whether two functions are inverses by finding both of their compositions. If both equal the identity function I(x) = x, then the functions are inverse functions.

KEYECONCEPT


Inverse Functions

Two functions f and g are inverse functions if and only if both of their Words compositions are the identity function.

Symbols $[f \circ g](x) = x$ and $[g \circ f](x) = x$

Graph the function and its inverse.

Graph both functions on the coordinate plane. The graph of $f^{-1}(x) = 2x - 6$ is the reflection of the graph of $f(x) = \frac{x+6}{2}$ over the line y = x.

Find the inverse of each function.

1)
$$g(x) = -\frac{1}{x+2}$$

3)
$$f(x) = -\frac{3}{x+3} + 2$$

4)
$$f(x) = 2x + 5$$

5)
$$f(x) = 2x + 10$$

6)
$$g(x) = \frac{1}{-x-2} + 1$$

7)
$$h(x) = -3x - 6$$

8)
$$f(x) = \frac{3}{x+1}$$

State if the given functions are inverses.

9)
$$f(x) = x + 4$$
$$h(x) = x - 4$$

10)
$$h(n) = 2n + 4$$

 $f(n) = -2 + \frac{1}{2}n$

11)
$$g(x) = 3x - 2$$

 $f(x) = 2x - 2$

12)
$$g(x) = \frac{3}{4}x + 1$$

 $f(x) = \frac{3}{2}x$

13)
$$g(x) = 2x + 6$$

 $f(x) = -3 + \frac{1}{2}x$

14)
$$g(n) = -n - 4$$

 $f(n) = -2n - 4$